SPECIFICATION

INPUT POWER:

- +24VDC nominal, range: 18 to 30VDC 0.3A DC Total Max.
- -24VAC nominal, range: 15 to 24VAC 50/60HZ 0.3A AC Total Max.

FUSE:

F2 on Main Board: Polyswitch 750mA
Polyswitch device resets after the fault is cleared and power to the circuit is removed

SENSOR:

- Combustible gases: Catalytic
- Toxic gases and Oxygen: Electrochemical
- Carbon Dioxide: Non-Dispersive Infra-Red (NDIR)

OUTPUT SIGNAL:

- BACnet MS/TP master / slave protocol
- 3X SPDT RELAYS: 1.0A MAX. @30VDC (RESISTIVE LOAD) 0.3A MAX. @125VAC (RESISTIVE LOAD)

ENCLOSURE:

- IP 66 & NEMA 4, 4X, 12 & 13

OPERATING TEMPERATURE:

- -40°C to 70°C, depends on sensor specification

AMBIENT HUMIDITY:

- 5% to 95% RH (NON-CONDENSING)

STORAGE TEMPERATURE:

- 0°C to 20°C, depends on sensor specification

SIZE:

- 150mm X 90mm X 65mm

WEIGHT:

- LESS THAN 0.5lbs

Option Accessories are not included in Q5 or B5 Standard Package.

Q5 Accessories:

- Pump-thru & Cal Cap Kit SKU#: 85930-006-000
- Splash Guard Kit SKU#: 85930-007-000
- Duct Mount Adapter Kit: 85930-040-000

Option Accessories are not included in Q5 or B5 Standard Package.
Terminator Enable/Disable?

The terminator on each end of the RS485 loop is designed to match the electrical impedance characteristic of the twisted pair loop, and will prevent signal echoes from corrupting the data on the line. The terminator should be enabled on BOTH ends of the RS485 loop. Short and medium length modbus/485 loops can operate without the terminating resistor. Longer runs may require the terminating resistors. But adding terminator dramatically increases power consumption.

Twisted Pair?

RS-485 is designed to be a balanced system. The signal on one wire is ideally the exact opposite of the signal on the second wire. In other words, if one wire is transmitting a high, the other wire will be transmitting a low, and vice versa. Although RS-485 can be successfully transmitted using multiple types of media, it should be used with wiring commonly called "twisted pair."

Sensor Location:

Several factors should be considered when selecting locations to install sensors. The following general suggestions should be considered to assure the detection of the target gas. Select the most suitable location for each sensor.

1. Air Currents: If there are fans, winds, or others sources of air movement, gases may tend to rise to collect in certain areas of a facility. The local air currents should be assessed to aid in selecting the sensor location. In outdoor situations considerations such as prevailing winds should be accounted for. Air convection can often be more important in determining gas concentrated areas than factors of Vapor Density.

2. Vapor Density: For the target gas heavier than air. Detecting location should be 9 - 18 inch (0.23m to 0.46m) above the floor.

3. Gas Emission Sources: As a rule, at least one sensor should be located in close proximity to each point where a leak is likely to occur. This is particularly important when a liquid having a low volatility is monitored.

4. Environmental Factors: Designed to rugged outdoor use consider the following in selecting locations. Install sensors where they will be protected from wind, dust, snow, water, vibration and shock.
Quatrosense Environmental Ltd

INSTALLATION DRAWING

PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF QUATROSENSE ENVIRONMENTAL LTD. REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITTEN PERMISSION OF QUATROSENSE ENVIRONMENTAL LTD IS PROHIBITED.

<table>
<thead>
<tr>
<th>Quatrosense Environmental Ltd</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTALLATION DRAWING</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SHEET</th>
<th>DWG. NO.</th>
<th>REV</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>85950-102-000</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCALE: 1:2</th>
<th>WEIGHT:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHEET 3 OF 3</td>
<td></td>
</tr>
</tbody>
</table>

NOTICE: GAS SAMPLING OCCURS WHEN AIR FLOW ACROSS THE TWO TUBES CAUSES DIFFERENTIAL PRESSURE. THIS METHOD WILL NOT WORK IN STATIC AIR SAMPLING.